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SECTION 1
INTRODUCTION ;
In this report we present a general model for the motions of a %
two-dimansional sirfoil in unsteady aerodynamics. The equations of
motion are s set of coupled ordinary and functional differential

equations. Making use of general "approximating Wagner functions"
we develop a state aquc model that can be used for identification
and optimal control of such systems.

In Section 2 ve formulate the basic (hereditary) equations and
in Section 3 we develop the state space model. Although the resulting
model is infinite dimensional, there are certain special features of
the state space model that can be exploited in order to comstruct
approximation schemes. In Section 4 we discuss these features and
present an spproximation technique that can be used for parameter
estimation and optimal control of such systems. Section 5 contains
numerical examples that {llustrates the basic idess. Section 6 presents

some preliminary numerical results from an analysis of data derived

from wind-tunnel tests on an oscillating airfoil. Throughout this
! report we shall use the symbol
: 2 a4 £(a) g (0)
a's

to denote the Rismann-Stieltjes integral of g with respect to f over

o et ae mnna

integration).

E the intarval [a,b] (see [6] for a discussion of Riemann-Stieltjes




SECTION 2
THE HEREDITARY MODEL

Consider the two-dimensional airfoil shown in Figure 1.1. The
basic equations for the pitching and plunging motions of the air-
foil may be found in a number of papers (see for example [10,171).
We shall follow the development in [17] and use fairly standard 4
nomenclature and conventions. We shall not write down the exact

constants which may also be found in the various references cited

previously.

, FIGURE 1.1, The typical airfoil. j
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Let h(t) denote the "plunge" and a(t) the "pitch" of the air-

foil at time t. The equations of motion can be written in the

form

M z(t) + K, z(t) = -F(e), | (¢))

vhere z(t) is the column vector z(t) = collh(t) c;(t)] and F con-

tains the asrodynamic loads on the airfoil. In particular,

L(t)
F(t) = ’ (2)
H“ (v)

where 1L and Ha are the aerodynamic loads corresponding to total
wing lift per unit depth and total moment about the 1/4 chord per
unit depth, respectively. For the airfoil considered here, it

follows that (note that in this case d = x, = 1/2)

M () = b’ (3 ) £ + [0 0] 30}, (3
and
L(e) = wb? ({1 3] E(e) + [0 U] &(e)) ')
+ (2wpUb) D(t),
. vhere D(t) is the "Duhamel integral."” In particular, D(t) is
given by

t u .
D(t) = ,o o(g(t - 1)) Q(t)dr, (5)




- e -

where 9(Ut/b) is the Wagner function, and
t «
Q(t) = IO {[1 b] z(x) + [0 U] 2(x)}dr. (6)

To obtain a state space model that is suitable for
identification and optimal control, one must provide a "useful"
representation for D(t). One approach to this problem is to ap- '
préxinte D(t) by approximating the Wagner function ¢. For
example, the Jones two-term expanen'tial approximation of the
Wagner function (see [13,14]) results in a finite dimensional
model where D(t) may be viewed as the output of a second order
linear control system. Recently, it has been shown that D(t) 3
may be realized as the output of an infinite dimensional control
system (see [1, 2, 10]). In particular, D(t) can be explicitly
represented as the output of a system governed by a functional
differential equation (i.e., a hereditary system, see [ 9]). If
this explicit representation is exploited, then the resulting
model becomes an infinite dimensional control system. Again, it
will be necessary to introduce some type of approximation in order

to obtain a workable finite dimensional model.

Although we shall make use of the fact that D(t) is the out-
put of an hereditary system, the approach presented below is sim-
ilar in $pinit to the Jones two-term exponential approximation
of the Wagner function which we now briefly describe.

Jones [13] approximated the Wagner function ¢ by the two- .“

term exponential functior




IR C ARSIt S

-81 ut/b -Bz Ut/v
a, e R N

- Ut
O(b) l - &y e -
vhere a; = 0.165, g, = 0,335, B, = 0.0455 and 8, = 0.3. If % 1s

substituted into (5), then D(t) is approximated by

D(&) = Q(e) - o) By(E) - a, By(6), @

where Bl’ Bz satisfy the ordinary differential equations

By (t) = - 8, g— B, (£) + Q(¢)
. . (9)
By(t) = -8, TB.(0) +d(8) .

This approach leads to a sixth order ordinary differemtial equation
model for the motion of the airfoil (see [17] for complete details).
In order to understand the hereditary model to be discussed
below, it is worthwhile to look at the same approximation scheme
(i.e., the approximating model resulting from equatiomns (7)-(9))
from a different (system theory) point of view. Write the Wagner

function as

o(%:) -1 - W), (10)

and observe that the Duhamel integral (5) is equal to

D(t) = Q(t) - y(t) (11)




e T s ¥ L U U IO P

where 1

t .
y(t) = .ro Wit - 1) Q(r)dr . Q12)

The function W(t) is called a weighting patten and the Jones two- -

term exponential approximation (7) is equivalent to approxi-

-8, ©
) u/b [ 0 -8 ]t
W) = o, o,] 2 [i] : a3)

mating W(t) by

Observe that (13) can be written as
W(t) = C X(t) B,

vhere X(t) is the fundamental matrix for the ordinary differential

equation (of dimension 2)

. -8, 017.
x(t) = % [ 02 _82] x(t); (14)

C= [61 02] and B = col[l 1]. 1In particular,
B(t) = Q) - y(¢v) (15)

vhere y(t) is the output of the second order control system

. -8 0 - . [}
x(t) = ¢ [01 _Bz]x(t) + [i] (e (16)

with output




y(t) = (o, a,] x(t) an

Consequently, one may view the Jones approximation as an approxi-
mating of

y(t) = f; Wt - 1) §(r)dt

by the output of the (second order) finite dimensional system
(16)-(17) with input Q(t).

In the model detsiled below, we propose to approximate y(t)
by the output of a simple hereditary system (i.e., a retarded
functional differential equation). There are two basic reasons
for considering this approach. As indicated above, one can show
that the model should include hereditary terms (see (2], (9]).
Moreover, since ordinary differential systems may be viewed as
"special"” functional differential equations, the inclusion of
delayed terms is a very natural extension of the "exponential
type" approximations.

We turn now to the general problem of approximating y(t)

(and hence D(t)) by the output of a simple hereditary system. For
each parameter p € R". let G(t,p) denote a n x n matrix valued
function such that for p € R" the mapping t + G(t,p) is of
bounded variation on compact subintervals of (~=,0). Lat B and
C be n-dimensional column and row vectors, respectively. Let

r > 0 and consider the n-dimensional retarded functioval differ-

entisl equation




0

id(t) = f_ d.G(l.p)xd(t +8) + BQ(t). (18)

4

The output of system (18) is defined by

ya(e) = C x,(e). a9)

The system defined by (18)-(19) is parameterized by y = (p,r,
f B,CT). We define Q to be the set of all parsameters vy = (p,r,B,
¢ e ® xR x B x B® such that r > 0 and the pair B, C
satisfies
n
CB = 1.{‘1 cb, = 1/2 . (20)

The set 0 is called the set of admissible parameters for (18)-
(19).

Given (p,r), let X(t;p,r) denote the n x n matrix satisfying
(

X(t) = f°t d,G(s.,p)X(t + 8)ds, ¢t >0,

{ x® =1, (21

X(s) = On, s <0,
\

vhere In and on denote the n x n identity and zero matrices,
respectively. The matrix X(t;p,r) is called the fundamental
matrix for (18). (ses [7,12]). Givan y = (p,r,8,C0) € 8, .
define the approximate Wagner function ¢(Ut/b:y) by




oGEiv =1 - Wy, (22)

vhere W(t:y) is the weighting pattern for the hersditary systea

(18)-(19) given by
W(t;y) = CX(t;p,r)B. (23)

Observe that the condition that CB = 1/2 implies that
2(U0/b;y) = 1/2. Moreover, if y(t;y) denotes the output of (18)-

(19), then it follows that (see Hale [12])

t .
y(tsy) = fo W(t - 73v) Q(r)dr. (264)

Let D(t;y) and L(t;y) be defined by (see aquations (4)-(5))

t . |
DEsy) = S oGe - ) Godr = Q) - yCEsv) (25)

and
L(esy) = wed? {11 3] E(e) + [0 U] &(0)) (26)
+ (2voUb) D(tiy),

respectively. If L(t;y) is substituted for L(t) in (1)-(2),

then we obtain the model

M, s(t) + K, =(t) = -F(e;Y) (¢Y))

vhere




(28)
l(a(t)




SECTION 3

THE STATE SPACE MODEL

Given the parameter y = (p,t.!.cr) € 2 we shall construct a
dynamical system for the airfoil described in Figure 1.1, Recall
that z(t) = col[h(t) a(t)] and xd(t) is the n~dimensional vec-
tor function that satisfies the retarded functional diff.tcntm;
equation (18). Let x(t) denote the (4 + n)-dimensional vector .

x(t) = col[ h(t) a(t) h(t) a(t) x,(0)]. (29)

The basic model is defined by ((27)-(28))

M, £(t) + K, z(t) = -F(t;y) (30)

vhere

njo

[I-(tw)] 2 ,[ 1
F(t,y) = = wpb

M (t)

&

] " o u .

z(t) + z(t)

b_ 2 [ 0 W (31)
2 .

1
+ (ZtoUb)[ ]b(c;v)
o L ]

Observe that
1 1l
D(t;y) = {Q(t) - y(e;v))
(1] 0

and under the assumption that £(0) = 2(0) = 0, it follows that

1




1 1 b7, 0 vy b
[ ]n(t;y) -[ ]:(c) +[ ]l(t) -[ ]y(t:v). (32)
ol 00 00 0

Using the fact that y(t;y) = C x,(t), it follows from equations

(31) and (32) that (30) is equivalent to

H. ;(t) + K. z(t) = -wpbz

- 2upUb

+ 27pUb

C
x,(t)
0 d .

Define the 2 x 2 matrices 811’ All and A12 by

b

E-n-!-wpbzli

o). LIl I
2 8

1 b
+ 2wpUb . (35)
0 00

wefnema 2]

respesctively. If ‘13 denotes the 2 x n matrix

(34)

(36)

R "




c €, C+o:C
AL, = 2D = 2%plb B, 37

0 0 0...0

then the system (33) can be written as
By, E(E) = A, E(E) + A, £(8) + A, x,(0). (38) 3

Moreover, :d(t) satisfies

. 0 .
xd(t) - f_r d.G(l.p)xd(t +8) + BQ(t) (39)

o L ]
= f _ dG(s,p)x,(t +s) + B{[1b]z(t) + [0 Ulz(t)}.

- 8 x4

Define the n x 2 matrices !31 snd A31 by

E, = -Bl1b)=-| b, B, |, (40)

31

and

S

A31 = Bl0OU] = sz ’ (41)

8

tespectively. With !31 and ‘31 s0 defined, equation (39) becomes

- . 0 .
E, g(t) + xd(t) - J_r d.G(l.p)xd(t +8)+ Ay zg(t), (42)




In terms of the "state vector" x(t) = collz(t) =z(t) xd(t)l.

equations (38) and (42) combine to form the svstem

. 0
Ex(t) = Ax(t) + .I'-_r d.n(-.p) x(t +8), (43)

" where E, A and H(s,p) are defined by

B, o o0
E=|0 I, 0|, (44)
E o I,

A A A
I, 0 0

A= 2 ’ (45)
LAn 0 0
and
0 0 o
H(s,p) =|0 O O s (46)
0 0 G(s,p)

Observe that in general (43) is a linear retarded functiomal
differential equation with finite delay r > 0. HNowever, the medel
that results from the Jomes two-term exponsatial asppreximstiss is
but a special case of (43).

w’olo l‘tl"."("ln -h)dc.(.l .2)0 "l
-
:»ﬁ.’umn--uxn.mmz-zmm

tien 5(-.’) »w




-8 0
i[5 2} e

. -8,
s(e.p) = [ 5 3 ]. 1fs<0.

If x, (t) 1s iny continuous 2-dimensional vector function defined
on [-r, 4=), then '

0 -81 0
s . d'G(l.P)xd(t +8) = % 0 x,(t),

2

and the "delay equation" (39) reduces to the ordinary differential

equation

8 0 1
. U - .
x,(t) = B -8, x,(t) + L Q(e).

The output in this case is given by
y(tiv) = [a; a,lx,(¢),

and the corresponding fundamental matrix X (t) = X (t;y) is given by

-U/b B,t
e 1 (]

X(t;y) = " .
-U/b 8,t
0 o 2
Consequently, the spproximating Wagner functiom defined by (20)-(23)

is given by

15




~u/b Blt
e 0 1
-u/b 8t
0 e 1

;(Ig’t) - O(bEt i) =1 - [al 02]

U/ 8.t <U/b 8,t
=] - o e ~a, e ’

which is the Jones two-term exponential approximstion. Therefore,
the general model (43) includes as special cases those models

derived from two-term "Jones type" approximations.

EXAMPLE 3.2. Assume that the airfoil represents a tail section
of a flexible aircraft and that this tail section is in the wake
of the forward wing. The asrodynamic loads on the tail at time
t are influenced by the motion of the forward wing at some pre-
vious time, say (t - r). Moreover, because of the elastic coupling
between the tail and the wing, the motion of the forward wing is
influenced by the loads on the tail. Consequently, the loads on
the tail at time t involve the motions of the tail at a previous
time (t~-r). This "time delay" feature of a wing-tail configuration
has been observed by Reding and Ericsson [ 14,15] in their stability
snalysis of the 747/Orbiter.

To see how one can incorporate these pure time delays
in the model defined by (3.15) we assume that r > 0 and n > 1 are
fixed. Let B and C be such that CB = 1/2 and for p€ RB" assume

that Ao(P). AI(P) are n x n matrices parsmeterized by p. Define

the n x n matrix function G(s,p) by




~

Ao(p) + Al(P). | 0.
G(s,p) = { A (P, -r<s <0, 47)

0, . L f_ e T3

If x d(t) is a continuous n-dimensional vector function, then

0
f-r d.G(l,p)xd(t +8)s= Ao(p)xd(t) + Al(p)xd(t - ).

Consequently, the functional differential equation (18) becomes
the delay-differential equation

x,(6) = A (P)x,(£) + A (P)x,(t ~ 1) + BQ(e).
Also, the basic model (43) 1is equivalent
Ex(t) = Fy(p)x(t) + F (p) x(t - ©)

where E is defined by (44) and Fo(p) and Fl(p) are given by

(A A A5 ]
Po(p) |1, 0 (1]
(A1 0 4@
and
0 o o |
rl(p) =10 0 0
0 0 Al(p)d

respectively.




e 4e

e AN . Rl ReNTemr ¥ e eime ape e e e YR e mesnl i e s ey s o Ee e ama SHAE

We conclude this section with a model that includes a pure time
delay as well as distributed delsys. This model includes all of the
previously discussed models and yet a number of nice featurss are
retained which make the model a useful tool for identification and
optimal control.

lLat * > 0 and n > 1 be fixed and CB = 1/2 be as above. Assume
that Gc(l,p)'il an o x n matrix function comtinuous iz s and p and
define G(s,p) bY .

6(s,p) = G,(8,8) + £ G (u,p)du,

vhere G.(..p) is defined by (47), i.e.

AO(P) + ‘1(7). s=0,
G (s,p) = { A (P), -r<e <0, (50)
o' [ ] -<_ =T

1f G(s,p) 1is defined as above, and xd(t) 1is a continuous n-dimen-
sional vector function, then

I_: d.c(u.p):d(t +8)w Lo(p)xd(t)

0
+ AI(P)Sd(t -z) + !-r Gc(l,p)xd(t + g)ds.

Consequently, equation (43) may be writtea as

. 0
Bx(t) = o(p)x(t) + Il(p)x(c -z) + I_' K(s,p)x(t +8)ds, (51)

18
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vhere E is defined by (44), Fo(p). Fl(p) are defined by (48)-(49)

and K(s,p) is given by

0 o 0
K(s,p) =| 0 O 0 . (52)
0 0 Gc(e,p)

Although the model described by (51) has the nice feature
that it in some sense generalizes the classical approach due to

Jones (13], there are also theoretical justifications for consid-

ering (51) as the basic model. In particular, the "delayed
state" xd(t) is closely related to the circulation function I'(t)
(see [4,9]) and it may be shown using theoretical aerodynamics
that I'(t) does in fact satisfy a linear functional differ-
ential equation. A complete discussion of these theoretical
aspects will appear in a forthcoming paper (see [3]).

The structure of the system (51) is very special. There
are four "non-delayed states" (h(t) , a(t), h(t) , a(t)) and n
"delayed states" xd(t). More precisely, the matrices Fl(p) and
K(s,p) consist of zeros except in the lower right-hand n x n
blocks. This particular feature can be exploited in the develop~
ment of numerical algorithms, resulting in enormous savings in storage
and CPU time. In the next section we present two numerical schemes

for identification and control of systems governed by equations of

the form (51). These schemes are modified versions of the so

19




called AVE and SPLINE schemes (see [3,4,5]) that have been
developed especially for general hereditary systems of the form

(51).

20




SECTION 4
THE REDUCED STATE MODEL AND NUMERICAL APPROXIMATIONS

In this section we consider the hereditary control system i

governed by the linear functional differential of order (4 + n)

E(p)X(t) = Fy(p)x(t) + P, (P)x(t - ) G31 |

0
+/ K(s,p)x(t + s)ds + Gu(t),
-r

with initial data
x(0) = n, x(s) = ¢(s), s <0, (54)
and output
y(t) = Bx(t), (55)

where n is a (4 + n)-dimensional vector and ¢(t) is a (4 + n)-

dimensional vector valued function. Moreover, we assume that

the system matrices E(p), l’l(p) and K(s,p) have the special

forms,

E,( 0 0 i

EB(p) = 0 I2 0 ’ (56)
i En(p) 0 In ]
[ 0 o o

F () = 0 o o |, (57)
i o 0 ‘1(’)_

21
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and

K(s,p) = 0 o0 0 . (58)
0 o Gc(a,p)

We assume that for each p € R” the n x n matrix valued function
s+ Gc(s.p) is integrable on [-r,0] and the 2 x 2 matrix !11(1’)
is non-singular.

Since En(p) is non-singular, it follows that E(p) is non-

singular and

2y, 17" o o

[Ep)] " = 0 , 0. (9

2, P E, @I 0 I,

The basic idea is to approximate the hereditary system

(53)-(55) by a (po;sibly large) system of ordinary differ-
ential equations. This approach to identification and optimal
control of hereditary systems has been used by a number of ia-
vestigators (see [3] for a survey of this technique).
There are two particular schemes that have been used for such
hereditary systems; the AUE scheme (a "finite difference" type
scheme to be described below) and the SPLINE scheme (a "finite

elemant" type schems, see [4,5]).
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Although these two schemes have been applied to a number of
hereditary systems, there is a problem with the procsdure. In
particular, the size of the approximating system of ordinary dif-
ferential equations can become very large and thus reducing the
effectiveness of the algorithms. However, the special form of
the hereditary system (53)-(55) can be exploited to greatly im-
prove the usefulness of these general algorithms. To
describe the necessary modifications, we shall concentrate on the
AVE scheme. Similar modifications are valid for the SPLINE scheme
and a complete theoretical and numerical analysis of both proce-
dures (imcluding convergence results) will appear in a future
paper. | i

Let 0 < Ty € Ty < *» and suppose that T ¢ B x [t-,tnl is

a4 compact convex set. We assume that the initial data n € I(M‘)

(44n)

and ¢: [-rn,ol + R are fixed and comsider the following

typical parsmeter estimation problem (see [8]).

PROBLEM (ID). Given the input function u and observations
;1wttimu?1 0<F <F <...<E <T), find the system
parametens y* = (p*,r*) € I' which minimize the erron

) = L
I =3 121 lyceiv) -5, 1%, (60)

where y(t;y) 48 the output at time t Lo the hereditary system
(53)-(55).

23
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Given vy = (p,z) € T and a positive integer N, partition the

interval [-r,0) into N subintervals [t:(r). t:_l(r)l. wvhere
t:(r)--jr/ll,j-o. 1, 2,..., 4 TYrj=0,1,2,..., 8
define o;' by
N :
’o Ny . (61)
and
N ‘
t, () ]
0'; =33 s, (62)
:;'(r)

Rote that 0;' is an (4 + n)-dimensional vector snd that

(63)
SERPRN SR T

,,,,,, . N N N
C By col (¢, ¢, .', ’u]

is an (N + 1)(4 + n)-dimensional vector.
Define the [(N + 1)(4 + n)) x [(N + 1)(4 + n)] matrices

£ (p) and A¥(p) by

B(p) O
) - . (64)

and

24




pe -
@) K K - Kg @) ) +Ep)
N N
1 1 0 .- 0 0
Ao -] o LI S R 0 (65)
L o o . see %I -TNI
wvhere
N
t, ,(r)
& = [ 31 g(s,p)ds. (66)
3] N
tj(r)

Let Hn and GN be the (N + 1)(4 + n)-dimensional row and column

vectors defined by

B «[80,0, ..., 0] 67)

GN = col [G,0,0,..., 01, (68)

respectively.
wieh 2 (p), A%p), x:. B and G" defined by (61)-(68)
above, tha '(th approximating control system is defined by

@) = @) + Mue) (69)

g ———— - e




with initial condition
20 - = (70)
0 .
and output
e = B (o). D

Corresponding to system (69)-(71) we consider the following

approxinmating parameter estimating problem.

PROBLEM (IDN). Given the input function u and observations
y, at times &, (0 <€ <T <... <t <T), find the system
parametens Y = (3%, £ € I which minimize the evron

N =3 :51 PG A 2)
whmyn(t;v) 48 the output at time :tothend'appaowmﬁna
system (69)-(71).

Under very reasonable assumptions it is possible to show
that as N + =, the optimal solutions Y to PROBLEM (IDN) com-
verge to y*, the optimal solution of PROBLEM (ID) (see [3,8]).

Therefore, the idea is to select a value of N, construct the

spproximating system (69)~(71) and use a standard algorithm
to solve PROBLEM (IDN) for ?“. If N 1is "large enough", then ;.

is a good approximation to y*. This particular numerical scheme
1s called tha AVE scheme.
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Cousider the size of the approximating system (69)-(71) de-
fined by the AVE scheme above. The dimension of this systea is
DIM(N,n) = (N + 1)(4 + n), which for large values of N (or n) grows
very rapidly. This is {llustrated in Table 4.1 for various values 1

of Nand forn =1, 2, 3.

TABLE 4.1. The dimension of the AVE approximating systems
for values of N and n.

N DIM(N,1) DIM(N,2) DIM(N,3)
2 15 18 21
4 25 0 35
8 45 56 - 63
16 85 102 119
32 165 198 231
64 325 390 455

For N = 16, 32, 64 . . . , the size of the approximating systea
(69)-(71) becomes an important (and limiting) comsideratiom in
numerical computations. Therefore, we seek some method to reduce
this computational burdon. To modify the AVE scheme it is sufficient
to make a simple but important observation concerning the special
structure of the hereditary equation (53). In particular, we note
that at most n of the (4 + n) states in (53) are delayed. Consequently
it is not necessary to approximate all of the "history" x(t - r),

but only those coordinates which are delayed.




Let L) denote the maximu. snber of non-sero celumms ia

Al(p) aad the number of non-ger. c....ms in Gc(l.p). The smber 8,
muet fall between 0 and n. Ifn, - ) thnll(p)-omC‘ p) &
0 o0 that (33) is an ordinary differential equatiom and no approx-
instion is needed. mtly.v.ll.-thtlildgnmd

pertitien the mstrices 'o‘”' Il(p) and K(s,p) as follows:

To(o) = "'01(" L 'oz"”' (73)
’1(” -« (01} ru(p)l. (76)
K(o,p) = [0 ! I,(-.r)l. (79)

vhere 7,,(p), 7,,(p) and K (s,p) ave [(4 ¢ n) » u,) matriees.
Hewve ve have asoumed vitheut lsse of generality that the fizet
(4 + n)-n, colume are the sero colums. Let loil-‘ld.ou
tbl" (4 + n) matrix consisting of the matrix with seres ia

the first (4+-)-.‘«1-n.umu.¢:.3-o.1. 2,..., 0
by

' -
'o n (76)
and
L] |
- an
*3 (o t“loj
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where 0; is defined by (62). Note that

V) = col [¥g, ¥s - . - ¥yl (78)

is s [n ¥ + (4 + n)]-dimensional vector.
Define the [o N + (4 + )] x [n,H + (4 + n)] matrices
K(») ad AN by

[ E(p) O O c. 0 1
0 Ind o ... 0 - (19)
z:(p) - . . I“d .. ?
h o o . . . T, -

and
[ 2, 7y, () Ky () K () ... Ko () P, (o) +K3y
N -
0 ;Ind ;Ind 0 .« o 0 0
0 0 %In '%rn ve. 0 0
d a4
N
Al(’) - . - . . . (80)
. . -5 5,
4 ﬂd 4 ﬂd 1 ﬁ
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vhere I  represents the n, x n 1dcntity and
By d d

CAN )
Ky = /37 kyGa,p)ds. (81)
c;‘(r)

The fact that only ny of the states in the hereditary equation
(53) are delayed implies that the state space model defined by (53)-

(55) 1s not a "minimal realization" for the system. Consequently,

h

the corresponding N approximating systea defined by (69)-(72)

is not s minimsl (i.e. not controllable and observable) and can be
reduced in dimension. In particular, if we define the REDUCED NT*
approximating system by the ordinary differential equation

B@ V() = e e +chuw), (82)
with initial data
V() = (83)
and output
yp(®) = (o), (84)

vhere 5} = [H, 0, ...,0) and G) = col [G, O, . .., 0], then one
can show that (69)-(71) and (82)-(84) have the same input-

output operator (i.e. y:(t) - yu(t))o

30
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The dimension of the reduced system defined by (82)-(84) depends
on N, n and ng. Moreover, the system is largest when ng = n. For
ng - 1 1s

/

reasonable and in this case the dimension of the reduced system (82)-

applications to the airfoil in Figure 1.1, the value of

(84) 1s given by DIM(N,n) = {N + (4 + n)]. Table 4.2 illustrates:
the sizes of the REDUCED approximating systems for various values of
N and n, in the case that LY 1. 1If one compares Table 4.2 with

Table 4.1, then it becomas clear that for large values of N and n

the system (82)-~(84) is much smaller (and hence much more manageable
for numerical calculations) than the non-reduced AVE system (69)-(72).

For example, 1f N = 64 and n = 3 then the dimension of (69)-(72) is }

455 while the dimension of the "equivalent" system (82)~(84) is 71!
TABLE 4.2. The dimension of the REDUCED AVE
approximating systems for values
of N and n.
n; = 1
N DIMR(N,1l DIMR(N,2 DIMR(N,3)
2 7 8 9
4 9 10 11
8 13 14 15
16 21 22 23
32 37 38 39
64 69 70 71 :
$ ' 3
1
i

R ‘W\m‘qgey B
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Corresponding to problems (ID) and (IDN) we have;

PROBLEM (IDNp). Given the input function u and observations
'y"iaxumu?1 (05?i <?2 < ... <Fm-'r). §ind the system para~
meters 7y = (B, £ € T which minimize the error

M —-— —
A -3 L s -7, 112, (85)

where yh(tsy) 48 the output at time ¢ o the reduced Nt approx-
imating system (82)-(84).

Although we restricted ourselves to the AVE approximating
scheme, the same basic ideas can be applied to the SPLINE scheme.
However, there are some differences in the two algorithms. For
example, it is not true that the REDUCED SPLINE SYSTEM has the

same input-output operator as the SPLINE SYSTEM.

32
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SBCTION 5

NUMERICAL EXAMPLES

In this section we present some numerical examples to illus-
trate the method discussed above. All the numerical results were

run under the Conversational Monitor System on an IBM 370/158 at

the Virginia Tech Computer Center. The test model is described

by the second order delay equation
x,(t) 0 1f[x,(t) 0O o x, (t-x) V]
xz(t) - 0 xz(t) 0 -a xz(t-r) 1

with initial data

87

xl(S)
22(9)

1]
—
o =
S—
-
L]
A
o

and output

¥, () ] 10 [ x, (£)
- , (88)
E yz(t) 01 xz(t)

where u_l(t) is the unit step at t = 0.1. The final time of

T = 2 is used in each example.
The "observations" ;; were generated by selecting the "true"

set of parameters y* = (u%, a%, r*) = (4, 10, 1), using the mathod

i3




of steps to solve (86)-(88) for y(t) and settin~ y, = y (t,).
Using this procedure, we generated 101 equally spaced data points
on the interval [0,2].
For various values of N = 2, 4, 8, 16, . . . the two problems
| PROBLEM (IDN) and PROBLEM (IDN) were solved. The amount of CPU
time required to solve each problem was recorded in order to com-
pare the two algorithms. In addition to the AVE scheme detailaed
above, we tested the SPLINE scheme 80 that a comparison of these
two schemes could also be made. The maximum likelihood algorithm

described in [ 8] was used in all of the calculations.
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EXAMPLE 5.1

In this example we assumed that the time delay r = 1 is known
and estimate w and a. Since the maximum likelihood estimator is
an iterative algorithm, start up values have to be provided. For
this example the initial estimates were w = v15 and a = 8,0. The nu-
merical results for this example are sumarized in Tables (5.1) -
(5.2).

Observe that the AVE scheme did not converge for N = 2, 4,

For N = 32 the dimension of PROBLEM (IDN) is 66. Consequently,
(because of storage limitations) this approximating system is
"two large" and we could not solve PROBLEM (IDN) for N = 32. The
AVE scheme produces exactly the same parameter estimates as the
REDUCED AVE acheme. However, the REDUCED AVE scheme requires con~-
siderably less CPU time than the AVE scheme.

The SPLINE algorithm converged for all values of N. Moreover,
as expected the SPLINE scheme produced better parameter estimates
than did the AVE scheme. Note that not only does the reduced prob-
lem require less CPU time, the REDUCED SPLINE scheme produces bet-

ter parameter estimates than the full SPLINE scheme. Figures 5.2

through 5.3 1llustrate typical "converged" data fits for N = 8,
16, 32 using the AVE scheme. Figure 5.4 shows the
N = 8 SPLINE data fits. The figures are plots constructed by using
the reduced approximating systems. However, it is impossible to
distinguish these plots from the plots one obtains using the non-
reduced approximating systems and therefore those plots are not
included.
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TABLE 5.1 A comparison of parameter estimates obtained using
the AVE and REDUCED AVE approximations.

PROBLEM (IDN) - AVE PROBLEM (IDNR) = AVE
~N ~N ~N ~N

N w_ a cry N Yg a cru

2 DID NOT CONVERGE 2 DID NOT CONVERGE
4 DID NOT CONVERGE 4 DID NOT CONVERGE
8 3.2476 15.5113 47 sec 8 3.2476 15.5113 20 sec
16 3.6431 12.2373 171 sec 16 3.6431 12.2373 47 sec
32 32 3.8233 11.1275 189 sec

True 4.0000 10.0000 True 4.0000 10.0000
TABLE 5.2 A comparision of the parameter estimates obtained using
the SPLINE and REDUCED SPLINE approximations.
PROBLEM (IDN) - SPLINE PROBLEM (IDNR)- SPLINE
X & a ey ] oy a a@u
— ]

2 3.7738 7.8675 18 2 3.6466 9.1217 8

4 3.9674 9.9133 17 sec 4 3.9535 10.3377 13 sec
8 3.9981 9.9651 36 sec 8 3.9950 10.0643 20 sec
16 3.9979 9.9731 94 gec 16 3.9970 10.0000 41 sec *
32 32 3.9976 9.9842 184 sac

True 4.0000 10.0000 True 4.0000 10.0000
36
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O1RZ2NBARYV [TR= 8 i
S.00 T T | T T T T T T :
] *
+ + + DATA w = 4,0000 a = 10.0000
T — v a8 = 3.2476 ad - 15,5113 i}
3.80 7 .4
2.20 7 x
—_
>—

| 0.80 7
;

-0.61 7 *, o -
”’0 o+
|
|

-2.00 + } } { I % } ! i

TIME
0.00 0.40 0.80 1.20 1.60 2.00
FIGURE 5.1. The data fits for Example 5.1 using N = 8 and the AVE
approximations,
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15.00 T T T T T T T ) T
**,M-M
8.00 ] ]
]
1.00 - 7
QY]
| — - +§
)_ ¢¢**’w*‘¢¢
-6.01 T .
+ 4+ + DATA W = 4.0000 a = 10.0000
4 — v o2 = 3.2476 a® = 15.5113
-13.01 T
‘ﬂ"
-20.00 % ! | % l % i } }
0.00 0.40 0.80 1.20 1.60 2.00
FIGURE 5.1b. The data fits for Example 5.1 using N = 8 and the AVE
approximations.
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T (1)

S5.00 — T
QmQ
T * * a
+ + + DATA w = 4,0000 a = 10.0000
oM w3643 a8 - 12,2373
3.60
2.20
0.80
-0.61
— 1
-2.00 +—t + + { — t
TIME
0.00 0.40 0.80 1.20 1.60 2.00
PIGURE 5.2. The data fits for Example 5.1 using N = 16 and the AVE

approximations,
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15.00 T
+ -
8.00 n
1.00 .
QV
hant ++*”+ -
> +W
-6.01 'L * *
+ + 4+ DATA w w 4,0000 a = 10.0000
i — e 3. 3em al® = 12,2373
-20.00 ——t— f —t—t—t—
! TIME
; 0.00 0.40 0.80 1.20 1.60 2.00
FIGURE 5.2.b. The data fits for Example 5.1 using N = 16 and the AVE
‘ approximstions,
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5.00
3.60
2.20

-

>_
0.80
-0.61
-2.00

01R2N32A

41 .

T T T I |
* * S22,
T 4+ + + DATA w = 4,0000 a = 10.0000 -
632 < 3.8233 a2 . 11.1275
| { L l | | | 1 |
I i T i T T T | {
TIME

0.00 0.40 0.80 1.20 1.60 2.00

FIGURE 5.3. The data fits for Example 5.1 using N = 32 and the AVE
approximations.
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15.00 T T T T T T T T T ]
8.00 .
1.00 -
) qV
; bl -
—
-6.01 . , .
: + + 4+ DATA w = 4,0000 a = 10.0000 7
1
‘; ' — AV @32 = 3.8233 332 « 11.1275
-13.017T
-20.00 f —t——+ % +—t— i |
TIME
6.00 0.40 0.80 1.20 1.60 2.00
FIGURE 5.3.b. The data fits for Example 5.1 using N = 32 and the AVE
. approximations.
) ‘
y , 42




Y (1)

01R2NBSP

I V
- 1
+++ DATA o' = 4.0000 a" = 10.0000 B |
SPLINE  &° = 3.9930 a® = 10.0643 |
3.60
3
2.20
E
1
0.80
-0.61
-2.00 | } + + ? t } - +
0.00 0.40 0.80 1.20 1.60 2.00 ;
PIGURE 5.4. The data fits for Example 5.1 uaing N = 8 and the SPLINE

approximations.
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J1R2NBSP

15.00 T T
8.00 ..1
1.00 N
QN
>
-6.01 7]
+++ DATA " = 4.0000 a" = 10.0000
1 SPLINE 23 = 3.9950 ad = 10.0643
-13.01 7T
1L
-20.00 ——— % } } — %
TIME
0.00 0.40 0.80 1.20 1.60 2.00
FIGURE 5.4)b.The data fits for Example 5.1 using N = 8 gnd the SPLINE
approximations,
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EXAMPLE 5.2.

We nov consider the problem of estimating all three parameters
(w, &, r) in the model (86)-(88). Start up values were taken to
be w = /15, a = 8.0 and r = 0.8. The addition of the time delay as
an unknown parameter increases the complexity of the problem and the
AVE schese never converged. However, the SPLINE scheme converged
for all admissible values of N. Tables 5.3 and 5.4 contain a
summary of the numerical results for this example. As ia the pre-
vious example, the reduced problem required less CPU time to con-
varge and generally produced better parsmeter estimates than the
full SPLINE scheme. PFigures 5.5 through S.7 1llustrate the
converged data fits for X = 2 8, 32.
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TABLE 5.3. Example 5.2 parameter estimates using SPLINE.

SPLINE SCHEME - PROBLEM (IDN)

5 l Ful £

2 3.4340 8.1849 .8725
4 3.8313 9.0540 .9476
8 3.9949 9.9439 .9989
16 3.9986 9.9775 1.0002

True 4.0000 10.0000 1.0000

CPU
31 sec
28 sec
60 sec

241 sec

TABLE 5.4. Example 5.2 parameter using REDUCED SPLINE.

SPLINE SCHEME - PROBLEM (IDNR)

N Pl ay L

= o} R i

2 3.5183 9.0515 . 9445
4 3.8092 9.3691 . 9457
8 3.9919 10.0448 .9991
16 3.9977 10.0002 1.0002
32 3.9979 9.9862 1.0001

True 4.0000 10.0000 1.0000

15 sec
19 sec
39 sec
104 sec

436 sec
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T (1)

01.RN2SP

1 TR= 7/

5.00 T ]
* * *
+++ DATA w = 4.0000 a =10.0000 r = 1.0000
-~ ~ N Ay
J——— srLmE 0% - 3.5183 a2l =9.0515 1% e .45 S 4
3.60
2.20
0.80
-0.61
+ -
-2.00 f } } -t i ] }
0.00 0.40 0.80 ™ . 20 1.60 2.00
FIGURE 5.5. The data fits for Example 5.2 using N = 2 and the SPLINE

approximations,
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J1.RN25FP

15.00 T T
-r— -
8.00 i
i
]
1.00 . !
]
“6.00 T, 44 para o' = 4.0000 a* =10.0000 r* = 1.0000
~2 ~2 ~2
SPLINE w" = 3,5183 a” = 9.0515 r = 9445
-13.01 7T
T
1
N \ 1 ! | ! | | !
-20.00 T { i ] i T R 1 ]
TIME
0.00 0.40 0.80 1.20 1.80 2.00
FIGURE 5.5.b. The data fits for Example 5.2 using N = 2 and the SPLINE
approximations.
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5.00

3.60

2.20

0.80

-0.61

-2.00

A

l

0

OlfRNB?P]

1TR=_

T 1
+4++ DATA « =4.0000 a = 10.0000 r = 1.0000
SPLINE &0 = 3.9919 a8 = 10.0448 %= .9901
—— 4
[ | | | 1 1 |
] 1 ] ] 1 | 1
TIME
0.00 0.40 0.80 1.20 1.60 2.00
FIGURE 5.6. The data fits for Example 5.2 using N = 8 and the SPLINE

spproximations.
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FIGURE 5.6.b. The data fits for Example 5.2 using N = 8 and the SPLINE

approximations,
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FIGURE 53.7. The data fits for Example 5.2 using N = 32 and the SPLINE

approximations.
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SECTION 6
PRELIMINARY ANALYSIS OF WIND-TUNNEL DATA

Several numericsl experiments were conducted using actusl wind-
tunnel data for a system similar to that shown in Pigure 1.1. The
experiments were performed at Neilsen Engineering and Research, Inc.
in Mountain View, CA, under the supervision of Dr. S, C. McIntosh,
Dr. McIntosh gratiocusly made some of the data available to the
authors.

The mathematical model appropriate for the experimental system
differs slightly fro-’ that analyzed above. Firstly, thes elastic
axis, at wvhich point the plunging motion is mesasured, is not at the
quarter-chord point (xu ¥ 1/2). Thus, while the mass matrix M, has

the form

the asrodynamic added mass-matrix is somewhat more general than the

form used in (3.6)

rob2 .

b x b2(1/8 + x:)
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A second generalization is the inclusion of viscous damping terms

Ch and ca along the diagonal in the submatrix All(sce (35)). The

structural stiffness matrix is diagonal with elements kn and ka. as

in [17]. .
Since the elastic axis is not necessarily at the quarter-chord,

the aerodynamic moment must include a term involving the product of

the lift and a moment arm b(xa - 1/2). The aerodynamic variable now

"feeds into" the pitch, as well as the plunging equation of motion.

Thus the sub-matrix is written (see (37)).
3

A13 =2noUD C.

b(x, - 1/2)

The generalization to non-coincident elastic axis and aerodynamic

center also requires alteration of the E,. sub-matrix which now has

31
the form (see (40))

E31 = - B[1, b(1/2 + xa)] .

The nominal values of the various system parameters are given

f in Table 6.1
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TABLE 6.1. Nominal values of the system parameters.
parsmgter value
n 1.628-10 1b-sec?/1n?
1, 5.426+10" 1b-sec?
Su 6.741-10“1b-lcc2/1n
b 4,95 1in
x, .297
o 1.47 x 10" 1b-sec?/1n"
K, 6.944 1bs/in’
ku 43.1 1bs
cy 1.9.10"31b-sec/1n?
c, 8.7:10 " 1b-sec
U 1325 in in/sec.

Note that the only model parameters for which values have not been
specified are the matrices B and C.and the matrix-valued function
G(s;p). These quantities describe the dynamic model for the unsteady

aerodynamic behavior (see (21)-(23)).
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EXAMPLE 6.1

The first example for which we present results employs a first-
order ordinary differential equation model for the unsteady asro-
dynamic behavior. This amounts to using a single exponential to
approximate the weighting pattern W(t) in the Wagner function repre-
sentation 2.10. Thus, we take n = 1, B = 1 and G(s;p) = gluo(l),

where u. is the usual unit step at zero. In this case the Riemann-

0
Stieltjes integral in (42) becomes

fgr dafg,uy(s) 1x, (t+s) = g x,(¢t) ,

so that (42) 1s an ordinary differential equation. Note that from
(20) theoretically one should expect C = 1/2. With this information
the overall system (43) is a fifth-order ordinary differential
equation.

The data used consists of sampled values of the variables ﬁ(t),
&(t), h(t) and a(t) at 157 equally spaced points on the interval [O,
.25 sec.]. Since the data seemed relatively free of noise, the
initial values for the first four compoments of the state were taken
as the recorded values at the initial time. No initial value is
available for state component Xg» the aerodynamic variable, thus it
was identified. Note from (35) that the second matrix in the sum

for A11 includes a multiplicative factor, 27, which is theoretical

1ift-curve slope. In this experiment the lift-curve slope was

!
|




identified so that the (1,1) and (1,2) elements in the sub-matrix

‘11 are allowed to vary accordingly. The other paramsters identified
are the scalar coefficient C, which sppears in the sub-matrix ‘13'
and the asrodynsmic time constant 8-

Rasults of this experiment sre illustrated in Table 6.2 and in
Figures 6.1 and 6.2. In these figures y(1)=h, y(2)=a, y(3)=h and

y(4) = a.

TABLE 6.2. Parameter astimates for the ordinary differenital
equation wodel; Example 6.1.

iteration xs(O) c‘ c .l
0 0.0 6.28 .500 -12.2
1 25.8 11.65 .838 -28.6
s 95.4 8.41 724 -95.2
10 8.3 8.68 .652 -75.4
20 78.9 8.98 .628 -64.0

Shown in Figure 6.1 are the data matches using the start-up
estimates for the paramsters. As is evident from the y(1) and y(2)
matches, the fundamental frequency is nearly correct but the actual
plunge damping is higher than predicted by the model while the pitch
demping is lighter. The actual data exhibits some high frequency
oscillations that are completely -li.llill. in the model. The “converged"

results shown in Figure 6.2 indicate some improvement in the data fits
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but the quality of the fit is still quite poor. It seems likely that
some of the "fixed parameters” (e.g. the plunge damping parameter, ch)
may be in error. Alternatively, it may be that the assumed model
structure (aerodynamics via a first-order ordinary differential equation)
is not appropriate. In any case a more systematic investigation is

. needed. As in the previous figures we use " + + + " to denote the
wind-tunnel data values and a solid line to indicate the values of the

output from the mathematical models.
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FIGURE 6.1. The startup data fits for the ordinary differential equation

model; Example 6.1.
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0.00 0.05 0.10 0.15 0.20 0.
FIGURE 6.1.b. The startup data fits for the ordinary differential

equation model: Example 6.1.
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FIGURE 6.1.c. The startup data fits for the ordinary differential equation
model; Example 6.].
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0.0%
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—t+
—
-0.01
_0.04 T -
-0.05S +—t— { i —— }
TIME
0.00 0.0S 0.10 0.15 0.20 0.25

FIGURE 6.1.d. The startup data fits for the ordinary differential equation
model; Example 6.1.
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1 ] ) 1 1 ] ] -
-5.00 LI T T LI T T T T
6.00 0.05 0.10 0.15 0.20 0.25
FIGURE 6.2. The converged data fits for the ordinary differential equation

model; Example 6.1.
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Y (2)
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FIGURE 6§.2.b. The converged data fits for the ordinary differential equation

model; Example 6.1.
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FIGURE 6.2.c. The converged data fits for the ordinary differential equation
) model; Example 6.1.
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FIGURE 6.2.d. The converged data fits for the ordinary differential equation
model; Example 6.1. )
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EXAMPLE 6.2

A second experiment was conducted using a simple dalay model for
the unsteady aerodynamic behavior. The situation is very similar to
the ordinary differential equation case described above, except that
the matrix valued function G(s;p) now has the form G(s;p) = gluo(g)
+ gzu_r(:) so that the Riemann~Stieltjes integral in equation (42)

now becomes
Igr ds G(.;p)xd(tﬂ) = slxd(t) + gzxd(t-t) .

The system parameters identified include c'a’ C and 8, as above,
and the additional parameter 8¢ The time-delay, r, was fixed at
r = .05 sec. This selection was made based on a very preliminary scan
of the data. In this case the requried initiasl data is the value .
xs(O) and the initial history of xs(-) on the interval [-r,0]. Rather
than allov the computer algorithm complete freedom of choice in
determining the initial data several 'experiments' were performed with
operator selected values., The values selected were xs(O) = 36.,
x,(—r/u) - 4.0, xs(-ZrIN) = ,25 and all other xq 'knot' values are
zero. In the results reported the SPLINE REDUCED procedure was used
with § = 16.




TABLE 6.3. Parameter estimates for the hereditary model; Example 6.2.
iteration c‘u C 8; 8,
0 6.28 .500 -12.2 0
1 11.72 .139 -70.0 13.7
5 9.36 1.512 -270.5 -113.5
10 9.07 1.658 -309.8 -104.6
20 8.81 1.496 «274.8 -62.5
49 8.77 1.412 =255.1 =47.5
90 8.76 1.411 -254.8 =47.8

Results from the parameter identification algorithm for this

case are shown in Table 6.3 and in Figure 6.3.

The startup fits

are the same as in the previcus example and are not repeated.

While

the data fits for the hereditary model exhibit some improvement over

the previous example the quality of the matches is still rather poor.

As noted above it seems that one or more of the 'fixed' parameters

has been incorrectly specified.
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FIGURE 6.3. The converged data fits for the hereditary model; Example 6.2.
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FIGURE 6.3.c. The converged data fits for the hereditary model; Example 6.2,
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SECTION 7

CONCLUSIONS

The state space model (43) offers a generalization of earlier
formulations of dynamic models for the system shown in Figure 1.1
[13, 16, 17]). The inclusion of a hereditary dynemic model for the
'aerodynamic' states is significant in that several recent investigations
have shown that fundamental unsteady aerodynamic analysis produces
precisely such hereditary models {1, 2, 9].

In order to deal efficiently with the problem of parameter estimation
for the model (43) some earlier numerical algorithms for identification
of hereditary systems [4, 5, 8] were reworked to incorporate separation
of 'delayed' and 'non-delayed' states. This refinement results in
significant savings in computer costs and increases the scope_of pro-
blems for which the methods are easily implemented.

Some results from preliminary studies of identification using
actual wind-tunnel data indicate some improvement when hereditary

modelling is used. These results must be viewed with caution until

more systematic studies are performed.
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